Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanoscale ; 16(2): 752-764, 2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38087988

RESUMO

The parasitic nature of the SARS-CoV-2 virus demands selective packaging of its RNA genome (gRNA) from the abundance of other nucleic acids present in infected cells. Despite increasing evidence that stem-loop 4 (SL4) of the gRNA 5' UTR is involved in the initiation of this process by binding the nucleocapsid (N) protein, little is known about its conformational dynamics. Here, we unravel the stability, dynamics and (un)folding pathways of SL4 using optical tweezers and a base analogue, tCO, that provides a local and subtle increase in base stacking without perturbing hydrogen bonding. We find that SL4 (un)folds mainly in a single step or through an intermediate, encompassing nucleotides from the central U bulge to the hairpin loop. Due to an upper-stem CU mismatch, SL4 is prone to misfold, the extent of which can be tuned by incorporating tCO at different positions. Our study contributes to a better understanding of SARS-CoV-2 packaging and the design of drugs targeting SL4. We also highlight the generalizability of using base analogues in optical tweezers experiments for probing intramolecular states and conformational transitions of various nucleic acids at the level of single molecules and with base-pair resolution.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , RNA Viral/química , Sequência de Bases , Conformação de Ácido Nucleico , Pinças Ópticas , RNA Guia de Sistemas CRISPR-Cas
2.
ACS Nano ; 17(21): 21030-21043, 2023 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-37847543

RESUMO

Single-particle catalysis aims at determining factors that dictate the nanoparticle activity and selectivity. Existing methods often use fluorescent model reactions at low reactant concentrations, operate at low pressures, or rely on plasmonic enhancement effects. Hence, methods to measure single-nanoparticle activity under technically relevant conditions and without fluorescence or other enhancement mechanisms are still lacking. Here, we introduce nanofluidic scattering microscopy of catalytic reactions on single colloidal nanoparticles trapped inside nanofluidic channels to fill this gap. By detecting minuscule refractive index changes in a liquid flushed trough a nanochannel, we demonstrate that local H2O2 concentration changes in water can be accurately measured. Applying this principle, we analyze the H2O2 concentration profiles adjacent to single colloidal Pt nanoparticles during catalytic H2O2 decomposition into O2 and H2O and derive the particles' individual turnover frequencies from the growth rate of the O2 gas bubbles formed in their respective nanochannel during reaction.

3.
ACS Nano ; 16(9): 15206-15214, 2022 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-36054658

RESUMO

Catalyst activity can depend distinctly on nanoparticle size and shape. Therefore, understanding the structure sensitivity of catalytic reactions is of fundamental and technical importance. Experiments with single-particle resolution, where ensemble-averaging is eliminated, are required to study it. Here, we implement the selective trapping of individual spherical, cubic, and octahedral colloidal Au nanocrystals in 100 parallel nanofluidic channels to determine their activity for fluorescein reduction by sodium borohydride using fluorescence microscopy. As the main result, we identify distinct structure sensitivity of the rate-limiting borohydride oxidation step originating from different edge site abundance on the three particle types, as confirmed by first-principles calculations. This advertises nanofluidic reactors for the study of structure-function correlations in catalysis and identifies nanoparticle shape as a key factor in borohydride-mediated catalytic reactions.


Assuntos
Nanopartículas , Boroidretos , Catálise , Fluoresceínas , Nanopartículas/química , Tamanho da Partícula
4.
Nat Commun ; 10(1): 4426, 2019 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-31562383

RESUMO

Studying single catalyst nanoparticles, during reaction, eliminates averaging effects that are an inherent limitation of ensemble experiments. It enables establishing structure-function correlations beyond averaged properties by including particle-specific descriptors such as defects, chemical heterogeneity and microstructure. Driven by these prospects, several single particle catalysis concepts have been implemented. However, they all have limitations such as low throughput, or that they require very low reactant concentrations and/or reaction rates. In response, we present a nanofluidic device for highly parallelized single nanoparticle catalysis in solution, based on fluorescence microscopy. Our device enables parallel scrutiny of tens of single nanoparticles, each isolated inside its own nanofluidic channel, and at tunable reaction conditions, ranging from the fully mass transport limited regime to the surface reaction limited regime. In a wider perspective, our concept provides a versatile platform for highly parallelized single particle catalysis in solution and constitutes a promising application area for nanofluidics.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...